GoPath Laboratories Client Services

Let Us Help You Get Started

Providing appropriate information saves valuable time, eliminates confusion, limits phone calls & shortens turnaround time.

- Indicate Billing
- Patient's Legal Name
- Patient's DOB and Gender
- Date of Service / Collection
- Patient's Address and Phone Number
- Ordering Physician's Name, Facility and NPI
- ICD10-CM Codes

Account Set Ups

- Immediate
- Customized Requisitions
- Personalized In-Service and Training
- Convenient Supply Ordering
- Specialized Account Set Up Team

Office Pickup Options

- Local Courier Services
- FedEx Express
- FedEx Same Day City

Billing Capabilities

Billing shouldn't frustrate your patients or distract your staff. We offer the following billing solutions:

- In-Network Lab Accepting All Government Insurances
- Work With Most Insurances & Customized Billing Options Available
- Convenient Client Billing
- Dedicated Billing Support
- Technical and Professional Model Billing also Available
- Tech-Only Services

Visit Us at GoPathLabs.com and Get Access to:

- · List of All Tests Offered
- Requisitions
- Current Services Provided
- Research Collaborations
- Licenses and Accreditations
- FISH/IHC/LIS Reporting
- Test Supply Order Forms
- Information About Our Pathologists,
 Scientific and Executive Team Members

GoPath Laboratories, LLC

1351 Barclay Blvd., Buffalo Grove, IL 60089 Toll Free: 1-855-GOPATH9 (855-467-2849) • Fax: 224-588-9941 E-Mail: sales@gopathlabs.com • www.GoPathLabs.com

Predicts clinical response to anti-EGFR therapy for RAS wild type metastatic colorectal cancer

The miR-31now[™] was developed to assist clinicians to identify the most appropriate therapeutic strategy for RAS wild type patients with metastatic colorectal cancer (mCRC) by measuring the expression of miR-31-3p, a microRNA biomarker which has been shown to be associated with anti-EGFR therapy response in this patient population.¹⁻⁵

The miR-31now enables clinicians to identify patients for which first-line anti-EGFR treatment will be of greater clinical benefit versus anti-VEGF therapy or when second or further lines of treatment with anti-EGFR therapy is beneficial to patients with mCRC.

- miR-31-3p expression was measured in primary tumors from 340 RAS WT patients enrolled in the FIRE-3 trial.
- Patients were split into low or high miR-31-3p expression subgroups according to a pre-defined cut-off.
- RAS WT mCRC patients with low miR-31-3p expression treated with cetuximab have a:
 - 40% risk reduction for death when treated with cetuximab compared to bevacizumab.
 - 12 month longer median overall survival when treated with cetuximab versus bevacizumab.
- There was no difference in survival outcomes between cetuximab and bevacizumab in patients with high miR-31-3p expression.

Low miR-31-3p expression levels predicts survival benefit with cetuximab in RAS WT metastatic colorectal cancer patients receiving FOLFIRI therapy.^{5,6}

Significantly higher investigator-assessed objective response (OR) in patients with low miR-31-3p expression treated with cetuximab + FOLFIRI vs. bevacizumab + FOLFIRI.

OR = 4.49 [2.07; 9.76], p=0.0001

Odds ratio [95% CI] adjusted on age, number of organs and BRAF status.

*excludes patients with missing data

Depth of response (DoR) for patients treated with cetuximab + FOLFIRI is significantly correlated with miR-31-3p expression levels.

No correlation observed between DoR and miR-31-3p expression in patients treated with bevacizumab + FOLFIRI.

- Low miR-31-3p expression favors first-line treatment with cetuximab for RAS WT mCRC patients.^{5,6}
- High miR-31-3p expressors have no difference in outcomes when treated with anti-EGFR or anti-VEGF therapy.^{5,6}
- The RT-qPCR miR-31now has been developed and technically validated to measure miR-31-3p expression levels in FFPE specimens from metastatic colorectal cancer tumors.⁷

References:

- 1. Manceau G, Imbeaud S, Thiébaut R, et al. Clin Cancer Res. 2014; 20: 3338-47.
- 2. Mosakhani N, Lahti L, Borze I, et al. Cancer Genet. 2012; 205: 545-51.
- 3. Pugh S, Thiébaut R, Bridgewater J, et al. Oncotarget. 2017: 8:93856-6.
- 4. Laurent-Puig P, Paget-Bailly S, Vernerey D, et al. J Clin Oncol. 2015; 33: (suppl; abstr 3547).
- 5. Laurent-Puig P, Grisoni ML, Heinemann V, et. al. J Clin Oncol . 2016; 34 (suppl; abstr 3516).
- 6 Data on file
- 7. Ramon L, David C, Fontaine K, et al. Biomarker Insights. 2018; doi.org/10.1177/1177271918763357